近期,MILab在能谱CT多物质分解研究方面取得新进展,医学影像领域顶级期刊IEEE Transactions on Medical Imaging于2020年10月16日以长文(Regular Paper)形式在线发表了我们题为“PMS-GAN: Parallel Multi-Stream Generative Adversarial Network for Multi-Material Decomposition in Spectral Computed Tomography”的研究论文。


        CT(Computed Tomography),即X射线电子计算机断层扫描,可以快速无创地获取高分辨的结构信息,为临床提供可靠的诊疗依据,因此在临床诊断中被广泛应用。能谱CT作为一种新型的CT成像方法,借助于光子计数探测器、快速kVp切换等技术,可以获取多个能谱下物质的投影数据,通过物质分解算法计算出物质的电子密度、等效原子序数等信息,从而进行物质识别、实现多物质的成分分解成像。在临床中,对造影剂物质的识别及定量分析有助于研究物体中造影剂物质的分布及其累积程度,对病灶诊断、降低辐射剂量等问题的研究具有重要意义。然而传统的物质分解方法受限于CT系统不可避免的非线性因素的影响:实际应用的X射线大多是连续能谱,对于传统的基物质分解模型来说,当其被引入连续能谱X射线的多色性因素时,物质分解精度往往受到各方面的因素影响而显著降低。


        为了实现对更多种基物质的同时分解,MILab从图像解缠(disentanglement)的思路出发,提出了一种新型的平行数据流生成对抗网络PMS-GAN(Parallel Multi-Stream Generative Adversarial Network),减少了深度神经网络在处理多物质分解任务时各子生成器之间的串扰;并设计了一种新型的差分特征信息图(differential map),借助于差分特征使各子生成器之间相互协助,进一步减少非目标基物质的分解残余;此外,研究团队还设计了基于Markovian判别器(PatchGAN)的损失函数,降低了损失函数设计的复杂度。上述工作极大地提高了能谱CT多物质分解的精度。




  • 无标签