标题: MILab Publications  
作者: Yanye Lu 9月 15, 2020
最后修改:: Yanye Lu 3月 25, 2025
微链接: (用于邮件) https://wiki.milab.wiki/x/2Q2rAg
导出为: Word · PDF  
层级
父页面
    主页: Scientific Works
标签
本页无标签设定.
页面权限
页面限制:
  • 只允许xiezhaoheng组的用户edit当前页面。 (set by Yanye Lu at 3月 22, 2025 22:23)
  • 只允许yanyelu组的用户edit当前页面。 (set by Yanye Lu at 9月 17, 2021 19:46)
链出链接
外部链接(101)
    https://doi.org/10.1016/j.aej.2020.03.009
    https://doi.org/10.1364/BOE.517757
    https://doi.org/10.1109/CVPR52733.2024.02554
    https://doi.org/10.1016/j.optcom.2019.05.017
    https://openaccess.thecvf.com/content/CVPR2022/papers/Zhu_W…
    https://arxiv.org/abs/2108.02451
    https://doi.org/10.1016/j.eswa.2024.125478
    https://github.com/neugmd/FundusData-FS
    https://github.com/riverback/riverback.github.io/blob/maste…
    https://doi.org/10.1002/mp.13317
    https://doi.org/10.1002/mp.15618
    https://doi.org/10.1364/BOE.379551
    https://doi.org/10.1609/aaai.v38i7.28563
    https://arxiv.org/abs/2302.11544
    https://doi.org/10.1007/s11548-018-1851-2
    https://doi.org/10.1016/j.media.2023.102884
    https://proceedings.mlr.press/v235/zhang24w.html
    https://doi.org/10.1109/TRPMS.2018.2805328
    https://doi.org/10.1126/sciadv.abc8733
    https://doi.org/10.1109/TPAMI.2023.3309621
    https://doi.org/10.1364/BOE.521453
    https://github.com/LujiaJin/One-Pot_Multi-Frame_Denoising
    https://github.com/gengmufeng/CNCL-denoising
    https://github.com/neugmd/BLRM
    https://github.com/MILab-PKU/dcpt
    https://doi.org/10.1109/TMI.2020.3035154
    https://doi.org/10.1167/tvst.13.3.18
    https://doi.org/10.1007/978-3-031-30666-2_2
    https://doi.org/10.1364/BOE.397750
    https://doi.org/10.1016/j.compmedimag.2022.102110
    https://doi.org/10.1002/jbio.201900008
    https://doi.org/10.1002/jbio.202100285
    https://doi.org/10.1109/TMI.2022.3184529
    https://arxiv.org/abs/2501.15510
    https://doi.org/10.1007/978-3-031-75653-5_5
    https://doi.org/10.1088/1361-6560/ad62d2
    https://github.com/zh460045050/DA-WSOL_CVPR2022
    https://arxiv.org/abs/2106.12284
    https://github.com/PPOLYpubki/RD3D
    https://ieeexplore.ieee.org/document/10510478
    https://doi.org/10.1109/TPAMI.2024.3411036
    https://doi.org/10.1186/s12938-019-0682-x
    https://doi.org/10.1109/TMI.2020.3031617
    https://github.com/riverback/V2C-CBM
    https://doi.org/10.1109/ICCV48922.2021.01207
    https://github.com/zh460045050/VQGAN-LC
    https://doi.org/10.1016/j.nima.2017.09.012
    https://arxiv.org/abs/2412.14587
    https://doi.org/10.1109/TNNLS.2024.3467132
    https://github.com/zh460045050/V2L-Tokenizer
    https://github.com/zh460045050/BCAM
    https://doi.org/10.1088/1361-6560/ac5ed7
    https://papers.neurips.cc/paper_files/paper/2024/file/1716d…
    https://mp.weixin.qq.com/s/nPbIkKbOdR6tk_4jfXicuw
    https://doi.org/10.1364/BOE.465991
    https://doi.org/10.1088/1361-6560/ad708c
    doi.org/10.1002/jbio.202100151
    https://doi.org/10.1186/s12938-018-0556-7
    https://arxiv.org/abs/2403.07874
    https://doi.org/10.1109/CVPR46437.2021.00128
    https://doi.org/10.1364/BOE.387807
    https://doi.org/10.1016/j.eswa.2024.126370
    https://link.springer.com/chapter/10.1007/978-3-031-72111-3…
    https://doi.org/10.1109/TMI.2021.3113365
    https://doi.org/10.1016/j.nanoen.2024.109425
    https://github.com/BICLab/Spike2Former
    https://doi.org/10.1007/978-3-031-20080-9_11
    https://doi.org/10.34133/hds.0170
    https://github.com/gengmufeng/TCFL-OCT
    https://arxiv.org/abs/2203.01714
    https://doi.org/10.1166/jmihi.2020.2923
    https://doi.org/10.1364/BOE.399506
    https://doi.org/10.1007/978-3-031-72111-3_36
    https://doi.org/10.1136/bjo-2023-323283
    https://arxiv.org/abs/2402.15152
    git.milab.wiki/GMF/cncl_medical_image_denoising
    https://doi.org/10.3389/fonc.2023.1129918
    https://doi.org/10.1088/1612-202X/abf5ce
    https://github.com/zh460045050/SNL_ICCV2021/
    https://doi.org/10.1016/j.omto.2022.12.002
    https://arxiv.org/abs/2501.04975
    https://doi.org/10.1088/1361-6560/ad4083
    https://doi.org/10.1007/s11263-023-01887-7
    https://doi.org/10.1186/s12938-018-0615-0
    https://doi.org/10.1002/mp.15799
    https://jnm.snmjournals.org/content/64/supplement_1/P863
    https://tianchi.aliyun.com/dataset/dataDetail?dataId=133217
    https://github.com/zh460045050/dawsol
    https://github.com/Zxl19990529/Class-driven-Scribble-Promot…
    https://github.com/weizeming/SAM_AT
    https://arxiv.org/abs/2406.11837
    https://doi.org/10.1016/j.compmedimag.2022.102164
    https://bmvc2022.mpi-inf.mpg.de/61/
    https://github.com/zh460045050/BagCAMs
    https://arxiv.org/abs/2207.07818
    https://doi.org/10.1109/TNNLS.2022.3202241
    wiki.milab.wiki/pages/viewpage.action?pageId=39190770
    https://github.com/QianChen98/CCLD-Net
    https://doi.org/10.1364/AO.58.000850
    https://doi.org/10.1002/jbio.202000282
    https://doi.org/10.1002/jbio.202300567
Scientific Work (1)     页面: MILab Publications
News Cluster (25)     页面: MILab提出一种OCT脉络膜结构分割方法(PMB)
    页面: MILab提出一种适用于多帧图像去噪的新型无监督学习策略(BMVC)
    页面: MILab提出融合类别信息的新型潦草标注弱监督语义分割方法(AAAI-24)
    页面: MILab提出一种新型对抗生成网络用于能谱CT多物质分解研究(TMI)
    页面: MILab提出一种用于视网膜脉络膜分析的激光散斑造影算法(LPL)
    页面: MILab提出一种兆赫兹多参数的全眼OCT成像系统(BOE)
    页面: MILab提出一种基于自监督和注意力图像融合策略抑制医学图像标签噪声(PMB)
    页面: MILab提出一种半监督深度神经网络用于光学相干层析图像去噪增强研究(Jbio)
    页面: MILab 提出一种新型激光散斑成像算法(CMIG)
    页面: MILab提出一种弱监督物体定位新方法(CVPR2022)
    页面: MILab提出一种新型信号-噪声互补学习策略用于医学图像去噪(TMI)
    页面: MILab提出一种背景感知的类别激活图生成框架用于辅助弱监督图像分割(TPAMI)
    页面: MILab在多模态眼底成像研究上取得重要进展(BOE)
    页面: MILab提出一种基于联合正则损失和集成元学习的小样本罕见眼底影像分类方法(MedIA)
    页面: MILab提出一种视觉-概念分词器用于构建自身可解释的图像分类模型(AAAI-25)
    页面: MILab提出轻量级Transformer用于OCT图像的同时去噪和分辨率增强(BOE)
    页面: MILab提出一种视网膜微循环氧动力学动力学成像和分析技术(BOE)
    页面: MILab提出基于集成类激活图的弱监督定位新方法(ECCV)
    页面: MILab提出首个无监督的多帧图像去噪策略(IJCV)
    页面: MILab在光学相干层析血管造影成像研究方面取得系列进展(TMI)
    页面: MILab提出一种医学图像分类任务中降低噪声标签影响的方法(MedPhys)
    页面: MILab提出一种将类别先验知识嵌入通用CT分割框架(TMI)
    页面: MILab提出一种基于邻域信息的深度学习OCTA重建算法(MedPhys)
    页面: MILab提出一种多模态眼功能成像新技术(Jbio)
    页面: MILab在无监督OCT降噪策略上取得进展(Jbio)